skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stancliffe, Richard_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Type Ia supernova explosions (SN Ia) are fundamental sources of elements for the chemical evolution of galaxies. They efficiently produce intermediate-mass (withZbetween 11 and 20) and iron group elements—for example, about 70% of the solar iron is expected to be made by SN Ia. In this work, we calculate complete abundance yields for 39 models of SN Ia explosions, based on three progenitors—a 1.4Mdeflagration detonation model, a 1.0Mdouble detonation model, and a 0.8Mdouble detonation model—and 13 metallicities, with22Ne mass fractions of 0, 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 2 × 10−3, 5 × 10−3, 1 × 10−2, 1.4 × 10−2, 5 × 10−2, and 0.1, respectively. Nucleosynthesis calculations are done using the NuGrid suite of codes, using a consistent nuclear reaction network between the models. Complete tables with yields and production factors are provided online at Zenodo:Yields (https://doi.org/10.5281/zenodo.8060323). We discuss the main properties of our yields in light of the present understanding of SN Ia nucleosynthesis, depending on different progenitor mass and composition. Finally, we compare our results with a number of relevant models from the literature. 
    more » « less
  2. ABSTRACT Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE (Mup) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way (MW) disc is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying Mup depends on the adopted supernova yields. Thus, observations do not provide a constraint on the Mup parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1–0.2 dex in the MW disc; this modification better reproduces observations. 
    more » « less